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Abstract
Facultative, intracellular bacterial symbionts of arthropods may dramatically affect host biology and reproduction.
The length of these symbiont-host associations may be thousands to millions of years, and while symbiont loss is
predicted, there have been very few observations of a decline of symbiont infection rates. In a population of the
sweet potato whitefly species (Bemisia tabaci MEAM1) in Arizona, USA, we documented the frequency decline of a
strain of Rickettsia in the Rickettsia bellii clade from near-fixation in 2011 to 36% of whiteflies infected in 2017. In
previous studies, Rickettsia had been shown to increase from 1 to 97% from 2000 to 2006 and remained at high
frequency for at least five years. At that time, Rickettsia infection was associated with both fitness benefits and
female bias. In the current study, we established matrilines of whiteflies from the field (2016, Rickettsia infection
frequency = 58%) and studied (a) Rickettsia vertical transmission, (b) fitness and sex ratios associated with
Rickettsia infection, (c) symbiont titer, and (d) bacterial communities within whiteflies. The vertical transmission
rate was high, approximately 98%. Rickettsia infection in the matrilines was not associated with fitness benefits or
sex ratio bias and appeared to be slightly costly, as more Rickettsia-infected individuals produced non-hatching eggs.
Overall, the titer of Rickettsia in the matrilines was lower in 2016 than in the whiteflies collected in 2011, but the
titer distribution appeared bimodal, with high- and low-titer lines, and constancy of the average titer within lines
over three generations. We found neither association between Rickettsia titer and fitness benefits or sex ratio bias nor
evidence that Rickettsia was replaced by another secondary symbiont. The change in the interaction between sym-
biont and host in 2016 whiteflies may explain the drop in symbiont frequency we observed.
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Introduction

Bacterial endosymbionts of arthropods are widespread and
may influence many aspects of host biology and ecology,
including nutrient use, abiotic tolerances [1, 2], defense
against natural enemies [3–6], host-plant interactions [7, 8],
and longevity or reproduction [9, 10]. Host-symbiont interac-
tions exist across a broad and dynamic spectrum of integration
with the host and duration of the association. On the one end,
obligate nutritional symbionts are generally intracellular and
faithfully maternally transmitted and may have associations
with their hosts that span hundreds of millions of years [11,
12]. These primary symbionts provide obligate functions for
their hosts [13] (e.g., amino acid provisioning by Buchnera
aphidicola in aphids [14], or B vitamin synthesis by
Wigglesworthia in tsetse flies [15, 16]). In contrast, facultative
or secondary intracellular symbionts are not required by the
host and have relationships with their hosts that are more
variable, and their generally larger genomes suggest shorter
association times with particular hosts [17]. The secondary
symbiontWolbachia has been estimated to be associated with
hosts for an average of seven million years [18].

Facultative symbionts may spread through a host popula-
tion by acting as mutualists that provide fitness benefits to
their host. Conversely, they may act selfishly by manipulating
host reproduction, increasing transmission to, or fitness of, the
infected females. Reproductive manipulation phenotypes in-
clude male-killing, in which males die in early development,
potentially releasing resources to infected females, feminiza-
tion, in which genetic males develop as functional females,
parthenogenesis induction, in which genetic males are con-
verted to genetic females, or via cytoplasmic incompatibility
(CI), a crossing incompatibility that favors infected females
[10]. Reproductive manipulators may also do their host both
harm and good. For example, CI-inducing Wolbachia may
also cause viral pathogen blocking, in which viral titers in
the host are substantially reduced, relative to uninfected hosts
[19, 20], and may assist in iron metabolism [21] in fruit flies.
Symbionts that show both costs and benefits could be either
beneficial or parasitic in different contexts. Fitness benefits
associated with facultative symbionts that mediate ecological
interactions are expected to be heterogeneous and especially
dynamic in the environment, as their benefits are commonly
conditional on the presence of the stress [22]. In the absence of
the stress (e.g., natural enemies or temperature extremes),
these symbionts may be costly to the host [23], leading to
variation in infection frequency in host populations. For these
reasons, we expect symbiont phenotypes that are conditional
on the environment or confer both host fitness benefits and
reproductive manipulation to be especially dynamic [18].

We might expect a change in the equilibrium infection
frequency of beneficial symbionts in host populations to be
influenced by or associated with a few factors [24]. First, a

change in the net benefit or reproductive manipulation of the
symbiont (perhaps because of a change of environment or host
genetic background) will have selective consequences for the
symbiont frequency. Second, when the strength of the symbi-
ont phenotype is dependent on bacterial titer within hosts,
something that is often, if not always true [24–29], a decline
in bacterial titer might reflect a reduction in the penetrance of
the phenotype and be associated with a decline in symbiont
frequency. Third, a reduced maternal transmission rate of the
symbiont will deterministically drive decline in symbiont fre-
quency. Lastly, symbiont infection frequency can be influ-
enced by the presence of other symbionts. Knowing how sym-
biont interactions develop, change, and break down over time
will increase our understanding of the linked population ge-
netics and ecologies of host and symbiont [24, 29].

Rickettsia is a facultative, maternally transmitted endosym-
biont that swept rapidly into the US population of invasive
sweet potato whiteflies (Bemisia tabaci (Hemiptera:
Aleyrodidae), provisional species designation “Middle East-
Asia Minor 1 or MEAM1”) [30]. This endosymbiont strain is
in the Rickettsia bellii clade and is closely related to the se-
quenced strain Rickettsia sp. strain MEAM1 from whiteflies
in China and Israel [31, 32]. In Arizona whitefly populations,
Rickettsia rose from an infection frequency of 1% to near-
fixation (97%) in a six-year period (2000–2006) [9]. In
2011, high frequencies of Rickettsia were observed through-
out its host range in the Southern United States [32]. This
dramatic rise in infection frequency was accompanied by ev-
idence from the laboratory of both reproductive manipulation
and fitness benefits to Rickettsia-infected Arizona B. tabaci
[9]. In a line where the uninfected whitefly background was
introgressed into Rickettsia-infected (R+) whiteflies to create a
homogenous nuclear background, R+ mothers produced more
female offspring than uninfected (R−) mothers, a type of re-
productive manipulation. At the same time, Rickettsia in-
creased fitness and performance of infected female whiteflies;
R+ whiteflies showed higher survivorship to adulthood, in-
creased fecundity, faster development time [9], and increased
resistance to pathogens [33]. In further studies, we demon-
strated that the benefits of infection were reduced in a second
introgressed laboratory line, although the female bias persisted
[34]. Further, the differences in the effects of Rickettsia in the
two lines were shown to be explained by host nuclear geno-
type [35]. All of this suggests that selection can act on herita-
ble variation in the relationship between Rickettsia and its
whitefly host.

Given this context, the population dynamics of Rickettsia
in whitefly populations may be labile and affected by the
coevolutionary interactions between the symbiont and its host.
Indeed, this study was motivated by preliminary data showing
the field infection frequency of Rickettsia had dropped from
its previous near-fixation levels. Here, we addressed the ques-
tion: “Has the infection frequency of Rickettsia declined in its
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whitefly host population?” We further explored factors pre-
dicted to affect interactions between symbiont and host that
could influence the infection frequency of Rickettsia in white-
fly populations in the field:

1. Maternal transmission frequency: A decrease in symbiont
transmission from mother to offspring would decrease
Rickettsia frequency, possibly leading to the eventual
elimination of the symbiont from the population.

2. Titer of infection: A decreased titer of infection within
hosts (for example, following selection for host
nucleotypes that dampen infection titer) could alter the
host-symbiont phenotype. If the low-titer symbiont phe-
notype is then neutral or costly in fitness value to the host,
we would predict an eventual drop in infection frequency
in the population.

3. Fitness effects of infection: Whether changes in symbiont
titer are involved in changing the relationship between
symbiont and host or not, heritable differences in the fit-
ness effects of the symbiont will drive changes in symbi-
ont frequency in the host population. A decrease in net
benefits to hosts or a loss of the reproductivemanipulation
of hosts could allow the frequency of the symbiont in the
population to be reduced by selection (if the fitness con-
sequences were negative) or drift (if the fitness conse-
quences were near neutral).

4. Presence of other secondary symbionts: We determined
whether the decline in Rickettsia frequency was accom-
panied by the rise in infection frequency of another sym-
biont. Competitive interactions between symbionts can
lead to replacement of one lineage by another [36, 37].

Methods

Field Frequency of Infection

Sampling

In the large species complex that is collectively denoted by the
name Bemisia tabaci, one invasive species, the “B” or
“MEAM1,” has dominated US field populations since its in-
troduction [38]. In addition to Rickettsia, two other symbionts
occur and have been shown to be present in every individual
in this species: Portiera aleyrodidarum is the primary nutri-
tional symbiont of all whiteflies [39], while Hamiltonella
defensa is also fixed in B. tabaci MEAM1 and is presumed
to also have a nutritional role [40, 41]. We collected this spe-
cies of whitefly from plots of field cotton at the University of
Arizona Maricopa Agricultural Center (Maricopa, AZ) across
the three successive years of 2015–2017. Adult whiteflies
were collected from 10–20 plants, each at least 10 m apart.

Nomore than 10 whiteflies were collected from any one plant.
All whiteflies were preserved in 97% ethanol, transported on
ice, and stored at − 20 °C.

DNA Extraction and PCR

For each collection date, we randomly sampled at least 50
female whiteflies for determination of infection status
(August and September 2015: n = 218; November 2016: n =
85; October 2017: n = 50).We extracted DNA from individual
female whiteflies using a Chelex extraction protocol [42], 10
μL final volume. We also extracted DNA from randomly
sampled female whiteflies collected from melons at the
University of Arizona Yuma Agricultural Center (Yuma, AZ,
270 km west of Maricopa; September 2017: n = 50). PCR for
Rickettsiawas performed using Rickettsia-specific 16S rDNA
primers 528F [5-ACTAATCTAGAGTGTAGTAGGGGATG
ATGG-3] and 1044R [5-GTTTTCTTATAGTTCCTGGC
ATTACCC-3] with 4 μL samples of DNA template [43]. All
samples were run with a positive (confirmed R+ whitefly ex-
traction) and negative (no DNA template) control, and an
additional PCR was performed to confirm the species status
of the whiteflies using primers that amplify different product
sizes [44]. All whiteflies were confirmed to be MEAM1.

In addition, to determine the sensitivity of our PCR proto-
col for detecting Rickettsia, we conducted an assay to deter-
mine limits of detection [32] in which DNA extractions from
the field that were positive for Rickettsia in a PCR reaction
were diluted in a tenfold dilution series. Standard PCR proto-
cols and gel visualization techniques were applied to these
full-strength extractions and dilutions. With this method, we
found that 8 of 17 samples could be diluted tenfold and still be
detected, while 9 could not be diluted. This suggests that titers
of Rickettsia had dropped in the field, and we were closer to
the limits of detection than in a previous study [32]. To in-
crease the likelihood of detecting low-titer infections, all
Rickettsia negative samples were rechecked via PCR or
qPCR (see qPCR methods) at least two additional times to
confirm the initial findings.

Establish Lab Matrilines

We collected live adult whiteflies from field cotton at the
Maricopa Agricultural Center in August 2016. Groups of at
least 50 males and 50 females each were reared on caged
cowpea plants (Vigna unguiculata var. California blackeye;
n = 12) for one generation in the lab. Cowpeas were used
for experiments because they are fast growing and able to
tolerate high densities of whiteflies. We isolated female late
fourth instar larval whitefly progeny (pupae) immediately pri-
or to eclosion to assure they were unmated, and used these to
established matrilines. For each matriline, one newly eclosed
virgin female was paired with one adult male (randomly
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selected from a different plant cage). Each pair was introduced
to a separate cowpea leaf disk experimental arena [9] and
placed in plant growth chambers (16:8 light:dark, 27 °C,
35% humidity). Whitefly pairs were allowed to mate and lay
eggs for 3 days, and then parents were collected from the leaf
disks into ethanol. DNA was extracted from mothers, and
diagnostic PCR was used to determine the infection status of
each line using the methods described above. The F1 offspring
were reared on leaf disks until adult eclosion, the newly
eclosed adult offspring were removed every 48 h, and the
collected offspring were preserved in ethanol and stored at
− 20 °C. To propagate the matrilines, sibling cohorts of 2–5
male and 2–5 female newly eclosed F1 offspring from each
leaf disk were placed on small cowpea seedlings in ventilated
plexiglass boxes (12.5 cm × 8 cm × 2 cm) with the bottom
edge of the boxes submerged in trays of water. The whiteflies
were allowed to mate and lay eggs for five days before being
removed. All leaf boxes were incubated in grow rooms at
(16:8 light:dark, 27 °C) and used to establish subsequent gen-
erations in the same manner.

For subsequent analyses, we used 72 matrilines. We ex-
cluded other lines in which one or more of the parents died
or were not recollected after oviposition (and therefore infec-
tion status could not be determined), or in which fungi or leaf
arena deterioration interfered with offspring development. We
also excluded any lines that did not produce at least one
daughter, as whiteflies are haplodiploid and can produce sons
without mating. Therefore, we could not confirm that the
mother had mated when only sons were produced. The group
of 59 matrilines we excluded showed no significant differ-
ences in frequency of infection or in offspring performance
compared to the matrilines used in transmission, titer, and
performance assays.

Vertical Transmission Frequency

Rickettsia transmission frequency was determined by sam-
pling 5–10 female F1 offspring from each of 12 R+ matrilines,
randomly selected from the lines established above. We ex-
tracted DNA from individual females and performed diagnos-
tic PCR as previously described. Also, in order to determine if
transmission frequency was consistent across generations, we
sampled 5–10 female F2 and F3 offspring from each of 10 of
these R+ matrilines, extracted DNA, and performed diagnostic
PCR to determine infection status.

Titer of Infection

Quantitative PCR

We amplified Rickettsia gltA (citrate synthase) from total
DNA extracted from 5–10 individual female F1 offspring,
each 1–2 days old, from each of 20 R+ matrilines [45].

Bemisia tabaci actin DNA (β-actin) was amplified as an in-
ternal standard to assess Rickettsia titer relative to host DNA.
Each gene was amplified in triplicate for each biological rep-
licate (individual female whiteflies). Extractions from known
R+ and R− whitefly samples were included as controls. An
ABI Prism® 7000 Sequence Detection System (Applied
Biosystems) and accompanying software were used to quan-
tify the real-time quantitative PCR data. Titer (relative density)
of Rickettsia was calculated by comparing the cycle quantifi-
cation value (Ct) of the Rickettsia gene to theCt of the whitefly
endogenous control gene using the 2−ΔΔCt method [46].

We assessed titer in two previously established Rickettsia-
infected lab lineages (MAC1 est. 2006 and MAC2 est. 2009)
and in whiteflies collected from the same field site in 2011
[32] using the methods described above. Uninfected field
whiteflies were excluded from the analysis. To determine if
Rickettsia titer was heritable, we also extracted DNA from 5–
10 individual female F2 and F3 offspring from each of 10 of
the R+ matrilines sampled above, and used qPCR to determine
the matriline titers in the F2 and F3 generations as described
above.

Fitness Assays to Determine Effects of R+ Infection

To assess the current fitness effects of Rickettsia infection on
whiteflies, we assayed the performance and reproductive ma-
nipulation of each of our field-collected matrilines, established
above, during their first (F1) generation on cowpea leaf disks.
To measure performance, we counted the number of eggs laid
by each mother and then incubated the disks and, once prog-
eny started to eclose, counted and sexed adult offspring every
48 h. We measured the percentage of offspring surviving to
adulthood and the development time (days to eclosion). The
percentage of unhatched eggs was determined at the conclu-
sion of the experiment by counting unhatched eggs remaining
on the leaf disk. To assess the reproductive manipulation of
the whitefly host by Rickettsia, we also determined the per-
centage of adult female offspring produced by each mother.

Bacterial Community Characterization of Sample
Whiteflies

We extracted DNA from single whiteflies sampled from lab-
oratory lines, field-collected whiteflies (2011), and whitefly
matrilines established from the field in 2016, as described
above. We also performed an extraction without a whitefly
to serve as a negative control. We then used the universal
bacterial primer set 341f (5′-CCTACGGGNGGCWGCAG-
3′) and 785r (5′-GACTACHVGGGTATCTAATCC-3′) to am-
plify the V3–V4 hypervariable regions of the 16S rRNA [47].
Library preparation and indexing followed the protocol
outlined by Illumina [48]. The library was bidirectionally
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sequenced on an Illumina MiSeq platform at the University of
Arizona Genetics Core using 2 × 300 chemistry.

Sequences were first processed with the program cutadapt
[49] to remove priming sites at the ends of sequences. Next,
we truncated the sequences at the first instance of a quality
score less than two and discarded sequences that contained
any unassigned bases (Ns) or had an overall expected error
score higher than two. We used the DADA2 algorithm to infer
which bacterial strains were present in the samples [50]. After
de novo chimera checking and removal, taxonomy was
assigned using the RDP classifier and the SILVA nr v123
training set [51, 52]. We detected seven bacterial strains in
the negative extraction blank. Only one of these, a
Propionibacterium species, was also detected in a sample.
We removed all seven of these contaminant strains from the
dataset prior to analysis. To control for differences among
samples in sequencing depth, we discarded samples with
low numbers of reads and rarefied sequences to 12,465 reads
per sample. We generated a bar plot of strain composition
within individual insects using the R package “phyloseq”
[53].

Analysis

We used ANOVA to test for significant differences in
Rickettsia titer among groups, and Tukey-Kramer pairwise
comparisons were performed to relate infection titers of labo-
ratory lines and 2016 field matrilines to titers of whiteflies
previously collected from the same site in 2011. We similarly
usedANOVA to test for significant differences in performance
and reproductive effects between R+ and R−whiteflies as well
as high R+ titer, low R+ titer, and R− whiteflies. Count data
was square root adjusted, and percentage data was arcsine
transformed. A post hoc Bonferroni correction was used for
multiple comparisons. The symbiont titers across three gener-
ations within lines were compared using Pearson’s correla-
tions. Results were analyzed using SAS 9.3.

Results

Field Frequency of Infection

We observed a drop of almost 50% in Rickettsia infection
frequency of whiteflies in 2015 and 2016 (Maricopa
2015, 58%, n = 218; 2016, 58%, n = 85) compared to
the high (93%) frequencies measured five years earlier, in
2011 [32] (Fig. 1). The decline in Rickettsia frequencies
was also shown to continue in the sixth year (2017, 36%,
n = 50; Fig. 1). Since our previous study of whiteflies
collected in areas around Arizona and New Mexico in
field cotton found that Rickettsia infection frequency rose
rapidly from 1% in 2000 to near-fixation in 2006, the

observations taken together show symbiont spread over
six years, a high frequency for at least five years, and a
gradual decline over 3-6 years (Fig. 1). The decrease in
Rickettsia infection frequencies observed in Maricopa in
2017 were also comparable to those observed in white-
flies collected from melons in Yuma, AZ, in the same
year, 270 km away (Yuma 2017, 34%, n = 50), suggesting
that the frequency drop was regional and not limited to a
specific location.

Transmission Frequency

Himler et al. [9] determined the rate of maternal transmission
of Rickettsia to whitefly daughters in a laboratory line
established from the field in 2006 to be 99.2% (n = 1 unin-
fected out of 120 whitefly females). In the current study in
2016, we found similarly high rates of transmission. In 12
Rickettsia-infected matrilines, whiteflies transmitted the infec-
tion to 98.0% of the female offspring sampled (n = 2 uninfect-
ed out of 100 female offspring in two of 12 matrilines). In
addition, the two matrilines that had uninfected offspring in
the F1 generation were not the same matrilines that had unin-
fected offspring in either the F2 or F3 generation (F2 uninfect-
ed: n = 0 out of 79 offspring, 0 of 10matrilines; F3 uninfected:
n = 2 out of 74 offspring, two of 10 matrilines), providing no
evidence of heritable variation in symbiont transmission rates.

Titer

Titers of Rickettsia in whiteflies collected in the field in
2011 were comparable to the titers of whiteflies from
two introgressed laboratory lines established in 2006
and 2009 [9, 34] and resampled in 2016 for the current
study (Fig. 2). In contrast, the matrilines collected in the
field in 2016 displayed strongly bimodal Rickettsia titer.
Titer within matrilines either showed a significantly low-
er titer of infection (70% of the time, n = 14 of 20 lines,
6–12 whiteflies/line; Tukey-Kramer pairwise compari-
sons, p < 0.002) or were comparable to, or in one case,
significantly higher than the 2011 infection titer (30% of
the time, n = 6 of 20 lines, 6–12 whiteflies/line; Tukey-
Kramer pairwise comparisons; Fig. 2). Laboratory line-
ages established in 2006 and 2009 (“MAC1 and MAC2”
of [34, 35]) showed no significant difference in infection
titer compared with 2011 field-collected whiteflies (Fig.
2).

Rickettsia titer appeared heritable. Among 10 matrilines,
three of three high-density matrilines had high titers in F2
and F3 offspring sampled, and seven of seven low-density
matrilines had low titers in F2 and F3 offspring sampled
(Pearson’s correlation: p < 0.01, all generations; F2: n = 6–
10 whiteflies/line, F3: n = 6–11 whiteflies/line; Fig. 3).
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Fitness Effects

Rickettsia infection was not significantly associated with im-
provements in whitefly performance (Fig. 4). We found no
significant difference in the number of eggs laid (F1,51 =
2.05, p = 0.1579; Fig. 4a), percent of offspring surviving to
adulthood (F1,51 = 1.40, p = 0.2426; Fig. 4b), or speed of
development to adulthood (female: F1,51 = 1.05, p = 0.3111;
male: F1,39 = 0.30, p = 0.5833; Fig. 4c, d). In fact, the one
statistically significant difference suggested a cost; Rickettsia-
infected whiteflies had significantly lower rates of egg hatch-
ing than did uninfected whiteflies (F1,51 = 6.14, p = 0.0165;
Fig. 4e). Rickettsia infection also did not significantly affect
the percent of female offspring produced compared to unin-
fected whiteflies (F1,51 = 0.50, p = 0.4807; Fig. 4f).

Rickettsia titer did not clearly influence whitefly perfor-
mance. There were no statistically significant differences in
performance among the high-titer, low-titer, and uninfected

lines (Fig. 5; eggs laid: F2,37 = 1.16, p = 0.3249; survival:
F2,37 = 2.74, p = 0.0775; female development time: F2,37 =
0.57, p = 0.5685; male development time: F2,36 = 1.52, p =
0.2323; percent female: F2,37 = 0.10, p = 0.9030), except in
the case of egg hatch, where an average of 8.4% of eggs from
low-titer lines failed to hatch compared to 3.6% from high-
titer lines and 2.9% from R− lines (Fig. 5; non-hatching: F2,37
= 3.36, p = 0.0455).

Bacterial Community Characterization of Sample
Whiteflies

The bacterial communities of all individual whiteflies
assessed (laboratory, field, and matrilines established from
the field) were dominated by the three lineages we expected
to find: Portiera aleyrodidarum, the primary nutritional sym-
biont; Hamiltonella defensa, a symbiont that is also fixed in
the MEAM1 whitefly species; and the Rickettsia that is the

Fig. 1 Percentage of Rickettsia-
infected field-collected female
whiteflies from Maricopa, AZ,
field site. Data for the samples
from 2000 to 2011 were pub-
lished previously [9, 32]

Fig. 2 The average relative titer
of the Rickettsia gltA genes in
adult female whiteflies from each
lineage relative to host DNA (β-
actin), plotted on a logarithmic
scale. Asterisks show groups with
least-square means that were sta-
tistically significantly different
from the 2011 field infection level
(first bar) using Tukey-Kramer
pairwise comparisons with
Bonferroni correction for multiple
comparisons. Error bars show
standard error. n = 6–12 individ-
uals for each of the samples
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Fig. 4 Boxplots of outcomes for
F1 offspring of uninfected
whitefly mothers (R−, n = 22) vs.
infected whitefly mothers (R+, n =
31). The dividing line in each box
refers to the median value, and the
bottom and top of the box enclose
the first and third quartile,
respectively. The lines indicate
the range of the data. The asterisk
indicates a significant difference
between R− and R+whiteflies (p <
0.05)

Fig. 3 The average relative titer
of Rickettsia in adult female
whiteflies from each of three
generations of 10 matrilines
compared to host DNA (actin).
Matrilines were categorized as
“low density” or “high density”
based on estimates of F1 whitefly
Rickettsia titer. Error bars show
standard error (n = 6–12 white-
flies per line in each generation)
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focus of the current study (Fig. 6). While the number of
Rickettsia reads was higher in the “high-density matrilines”
than in the “low-density matrilines” as expected, and absent in
the R− matrilines, there was no other apparent pattern to the
relative abundance of the three dominant bacteria (Fig. 6).

We detected a few other bacterial taxa: six strains be-
longing to the genera Sphingobium, Bacillus, Paracoccus,
Rhizobium, Chryseobacterium, and Pseudomonas as well
as one unidentified Enterobacteriaceae strain. All seven
strains were present at extremely low abundances and
represented < 0.1% of the total reads. There was no pat-
tern to suggest these rare taxa were associated differen-
tially with high- vs. low-density individuals or between
R+ vs. R− whiteflies; in fact, each of the seven strains
was only detected in a single whitefly individual. The

negative extraction blank did not show any overlap with
whitefly sample sequences, suggesting negligible sample
contamination.

Discussion

After the dramatic six-year sweep of Rickettsia infection of its
whitefly host in the Southwestern United States, followed by
years of near-fixation frequencies, our results indicate that the
frequency of Rickettsia infection of whiteflies is now under-
going an almost equally dramatic and rapid decline in frequen-
cy in Arizona populations, dropping from ~ 95% in 2011 [32]
to as low as 36% a mere six years later. Previous studies have
documented the rapid spread of symbionts through

Fig. 5 Boxplots of outcomes for
F1 offspring of uninfected
whitefly mothers (R−, n = 22) vs.
infected whitefly mothers (R+, n =
31; whiteflies collected in 2016).
Infected whiteflies were
categorized as “high R+” if their
infection titer was found to be as
high or higher than 2011 R+

whiteflies (n = 6) or as “low R+” if
their infection titer was found to
be significantly lower than 2011
R+ whiteflies (n = 12). The
dividing line in each box refers to
the median value, and the bottom
and top of the box enclose the first
and third quartile, respectively.
The lines indicate the range of the
data. Asterisks indicate
significant differences among
groups (p < 0.05)
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populations, generally facilitated by either fitness benefits to
the host or reproductive manipulation or a combination of
both factors [5, 36, 54]. Such rapid within-species invasions
fit within a broader picture of symbiont-associated diversifi-
cation, speciation, and the spread of symbionts between spe-
cies over (relatively) rapid evolutionary time [55]. A decline in
the frequency of symbionts within host populations has been
less well documented, however, perhaps because some of the
factors that we expect to cause decline (e.g., evolution of host
resistance, incomplete vertical transmission, drift) may occur
over a longer time scale that is difficult to observe [56]. An
important exception to this pattern is the example of the fac-
ultative symbionts of pea aphids, in which symbiont frequen-
cies fluctuate in response to environmental variables, even
within a season [22]. Here, we explored four proximate factors
that could have driven the steady decline in Rickettsia infec-
tion frequency.

We found no evidence of a change in vertical transmission
frequency of infection. Rickettsia transmission by female
whiteflies remained very high (98%, comparable to the 99%
observed 7 years earlier) [9]. This rate is similar to that of
many secondary endosymbionts which exhibit near-perfect
vertical transmission [57, 58]. We cannot rule out the possi-
bility that a decline in vertical transmission rate could have
had a role, however. Our vertical transmission results are from
a laboratory setting, and factors such as high temperatures or
exposure to natural (or manmade) antibiotic substances have
been shown to lower symbiont titer and transmission and may
be relevant in the field [59–61].

Within-host density, or symbiont titer, has been linked to
transmission rates as well as to the penetrance of symbiont-

related effects on host phenotype and sex ratio [26, 28, 29].
We predicted that the observed decline in infection frequency
might be driven by a drop in within-host titer of infection,
coupled with an associated decrease in fitness benefits of in-
fection. We found marginal support for this prediction.
Rickettsia titers in whiteflies were, on average, lower than that
at the time of peak infection frequency, and performance and
sex ratio effects of infection also appeared to be lower or
absent. However, about 30% of lines retained high Rickettsia
titers, comparable to previous observations, and we found no
evidence that differences in titer were associated with differ-
ences in performance relative to uninfected whiteflies (Fig. 5).
While the apparently bimodal pattern of Rickettsia titer we
observed is intriguing, a targeted study with very high repli-
cation might be necessary to discern if any subtle titer-
dependent performance costs or benefits exist. Titer differ-
ences also did not relate to the presence of another secondary
symbiont (Fig. 6). The presence of particular symbiont line-
ages may cause an increase or reduction in the titer of other
taxa in the same host relative to when that symbiont is absent
[62, 63], but the heritable bimodal pattern of Rickettsia titer in
whiteflies we observed occurred in a uniform background of
the two other symbionts: Portiera and Hamiltonella.

Our results instead support the idea that a decrease in the
benefits of infection may have driven the decline in symbiont
frequency. By examining matrilines established from the field
in 2016, we found no association between Rickettsia infection
in whitefly fecundity, development time, survival to adult-
hood, or sex ratio. In fact, Rickettsia-infected whitefly eggs
were slightly less likely to hatch, suggesting a net cost to
infection. These data stand in stark contrast to the findings

Fig. 6 Each bar represents 16S rRNA bacterial sequence abundances
within a whitefly individual, with all samples rarified to 12,465
sequences. The taxonomic identity of the sequences is indicated by
shade. The three bacteria shown (Portiera, Hamiltonella, and
Rickettsia) represent > 99.9% of all bacterial sequences present. From L
to R, the whitefly samples shown are LAB (whiteflies from the MAC1

laboratory line), F11 (whiteflies collected from the field in 2011), H16
(whiteflies from the high-density matrilines established in 2016), L16
(whiteflies from the low-density matrilines established in 2016), and R-
16 (whiteflies collected from the field in 2016 that had been determined
with PCR to be Rickettsia-free)
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of Himler et al. [9], in which Rickettsia-infected individuals
had higher fecundity, shorter development times, higher de-
velopmental success, and female-biased sex ratios, relative to
uninfected individuals with the same genetic background. The
current study results are more similar to Rickettsia effects in a
second (“MAC2”) background, established a few years later.
In MAC2, Rickettsia had moderate effects, and a one-
generation population cage experiment suggested the symbi-
ont was effectively neutral [34].

One limitation to our ability to compare the current results
to those of previous studies is that the role of Rickettsia was
examined here in matrilines established from field-collected
mated pairs, and not, as in previous studies, in introgressed
laboratory lines. Our approach for the current study allows a
much broader sampling of field genotypes and provides more
insight into the full phenotypic range of the host-symbiont
interaction in the field. However, due to the variation in ge-
netic background of hosts, we expect this type of analysis to
be less sensitive to the effects of Rickettsia than when the
genetic background has been homogenized via introgression
[64]. In spite of this, our data represent a reasonably large
sample size, and we found no trends in Rickettsia-associated
differences in sex ratio or benefits to performance.

Given the apparent benefits of Rickettsia infection docu-
mented at the time of its spread, we might ask: why would this
symbiont—or any beneficial symbiont—decline in a host
population? We speculate that the observed decline is driven
by changes in context-dependent fitness effects of hosting the
bacteria. One way in which selection could act is via differ-
ences in the interaction of the symbiont with the host nuclear
background. While both the fitness benefits and female bias
observed in the first laboratory whitefly line (MAC1) should
promote spread of the symbiont, the second introgressed line
MAC2, as mentioned, showed fewer fitness benefits, but a
persistent female sex ratio bias [34]. Female bias will promote
symbiont spread, but manipulation of sex ratio should be
resisted by the host. We found that the difference in the phe-
notypic effects of infection in the two lines could be largely
explained by the host nuclear genotype, rather than maternally
inherited symbiont or mitochondrial lineages [35]. Thus, we
predict a difference in the way hosts should respond to selec-
tion in the two lines, and in the different genotypes of the
population as a whole when the symbiont has variable bene-
fits. If a host developed resistance to infection (either through
exerting control of titer or directly on the sex ratio phenotype),
we would expect resistance to spread in genotypes like the
MAC2 line where infection is costly. If the MAC2-type host
genotypes are selectively competitive, we would predict a
decline in Rickettsia infection across the population. Such
shifts in host genotypes might be driven by environmental
change or by frequency- or titer-dependent effects (e.g., a
nucleotype with a novel fitness strategy may become advan-
tageous only when Rickettsia infection is widespread) [59].

We cannot say what caused the decline with certainty, and
any number of environmental variables could have also influ-
enced the whitefly-Rickettsia relationship. However, the vari-
able benefits of infection among host genotypes that we ob-
served could have been the starting point for the development
of host resistance to infection among some genotypes. Should
resistant genotypes become dominant, Rickettsia infection fre-
quency would decline. This explanation alone presents a plau-
sible hypothesis for the decline we observed.

The Life Cycle of a Symbiont-Host Relationship

While our understanding of how symbionts spread is support-
ed by a growing body of evidence, the decline and loss of a
symbiont partner has rarely been documented, and then only
because of replacement by another microbial partner [36, 37]
or by environmental effects on the symbiont rather than the
host. For example, coral that hosts less thermal-tolerant protist
symbiont strains is more prone to climate change–induced
symbiont death and subsequent coral bleaching [65]. Our
study provides a unique image of the full life cycle of a host-
symbiont partnership, one in which a secondary symbiont
declines without replacement from another strain or species
(Fig. 6). Although some host-symbiont life cycles may occur
over millions of years [18], the current study results raise the
possibility that the rapid formation and breakdown of host-
symbiont partnerships may also be common and part of a
largely unobserved phenomenon [66].

The evolution of populations can be fundamentally altered
by relationships with symbionts that can develop and break
down again within decades, relationships which we might
never know had existed if we sampled after they had disap-
peared. While gaining a symbiont may fundamentally change
the biology and genome of a host, losing it will not return the
host population to its original state and is likely to be no less of
a transformation. For example, symbiont sweeps will drag all
other maternally inherited DNA— mitochondrial haplotypes
and other symbiont genotypes—with them, reducing variation
in mtDNA, creating new cytonuclear conflicts and skewing
reconstructions of historical patterns of population demo-
graphics and speciation [67, 68].

The life cycle of invasion and decline of Rickettsia in
whiteflies that we observed could be one example of a large,
replicated natural experiment around the world. The invasive
B. tabaciMEAM1 species was introduced to countries around
the world in the last several decades and is infected with
Rickettsia at varying frequencies [69–72]. In Israel, although
a rise in infection was not documented, we saw a similar
decline of Rickettsia infection in MEAM1 over a decade
[32]. In Asia, Rickettsia has climbed to near-fixation in white-
flies in Japan [71] and has been documented at high frequency
in China [69, 72]. It would be very interesting to follow
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Rickettsia frequency in these areas to determine whether it will
also drop after a time.

Lastly, documenting and understanding symbiont declines
is likely to be relevant for the application of symbiont-based
control strategies. Particular CI Wolbachia have been shown
to cause mosquitoes to become refractory to some vector-
borne pathogens of humans [73–75]. The introduction and
subsequent drive of these symbionts into mosquito popula-
tions in the field has been successfully associated with a de-
cline in human arboviruses [76, 77]. While the exciting prom-
ise of this approach is a stable transformation of mosquito
populations and long-term decline of disease, the current
study points to the possibility of secondary symbiont-host
interactions being labile, and frequencies dynamic,
underlining the recognized importance of long-term monitor-
ing of symbiont frequencies in these programs [78].
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